On the Tsallis Entropy for Gibbs Random Fields∗

نویسنده

  • Martin Janžura
چکیده

The Tsallis entropy, as a generalization of the standard Shannon-type entropy, was introduced by Constantino Tsallis (1988). Since that the concept has been extensively studied (see, e.g., Tsallis (2009)). In the present paper we address the problem of generalizing the concept for infinitedimensional systems, i.e., the random processes and fields. Apparently, rather well suited models are the Gibbs distributions (cf. e.g., Georgii (1988)). We construct the appropriate Tsallis entropy rate either asymptotically by limit over a sequence of expanding volumes or by analogy with the exponential finite-dimensional distributions. Basic properties, taking into account the possible phase transitions, are also introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Entropies of degree-q and the Tsallis Entropy

The Tsallis entropy is shown to be an additive entropy of degree-q that information scientists have been using for almost forty years. Neither is it a unique solution to the nonadditive functional equation from which random entropies are derived. Notions of additivity, extensivity and homogeneity are clarified. The relation between mean code lengths in coding theory and various expressions for ...

متن کامل

Special Issue: Tsallis Entropy

One of the crucial properties of the Boltzmann-Gibbs entropy in the context of classical thermodynamics is extensivity, namely proportionality with the number of elements of the system. The Boltzmann-Gibbs entropy satisfies this prescription if the subsystems are statistically (quasi-) independent, or typically if the correlations within the system are essentially local. In such cases the energ...

متن کامل

A Preferred Definition of Conditional Rényi Entropy

The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...

متن کامل

Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions

The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...

متن کامل

Notes on evolution of axiomatic characterization of the Tsallis entropy

The Tsallis entropy was proposed as a possible generalization of the standard Boltzmann-Gibbs-Shannon (BGS) entropy as a concept aimed at efficient characterisation of non-extensive complex systems. Ever since its introduction [1], it has been successfully applied in various fields [2]. In parallel, there have been numerous attempts to provide its formal derivation from an axiomatic foundation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014